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ABSTRACT: A strict statistics of self-avoiding random
walks in the d-measured lattice and continuous space for
intertwining chains in the concentrated solutions and
melts was proposed. On the basis of this statistics the ther-
modynamics of conformation and isothermal and adia-
batic deformation of intertwining chains was described.
The equation of conformational state has been obtained. It
was shown that in the field of chains overlap they are
stretched increasing its conformational volume. In this vol-
ume there are other chains with the formation of m-ball.
Free energy of a chain conformation does not depend
upon the fact, if the chains intertwined or they are isolated
in the m-ball. Mixing entropy is responsible to the chains
interweaving in the m-ball. Dependencies of the conforma-
tional radius, free energy, and conformation pressure on
respective concentration of polymeric chains have been
determined. Using the thermodynamics of intertwining
polymeric chains of m-ball conformational state and also
the laws of isotropic media deformation into linear differ-

ential form the theoretical expressions for elasticity mod-
ules (namely, volumetric volume, Young’s module and
shift’s module) and for the main tensions appearing at the
equilibrium deformation of the m-ball were obtained. Pois-
son’s coefficient is a function only on the Euclidean’s
space and for the real three-dimensional space is equal to
3/8. A simple model explaining the tensile strength of the
m-ball by the chains intertwining effect and, thereafter by
the loss of the mixing entropy, but not by the chemical
bonds breaking was proposed. Calculations of the elastic
properties, the main tensions, and tensile strength of natu-
ral rubber carried out without using the empirical adjust-
ing parameters are in good agreement with the experi-
mental data. � 2008 Wiley Periodicals, Inc. J Appl Polym Sci
109: 2472–2481, 2008
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INTRODUCTION

Self-avoiding random walks (SARW) statistics has
been proposed1 for single, that is noninteracting
between themselves, ideal polymeric chains (free-
articulated Kuhn’s chains2) into ideal solvents, in
which the all-possible configurations of the poly-
meric chain are energetically equal. From this statis-
tics it is followed that under the absence of external
forces the conformation of a polymeric chain takes
the shape of the Flory ball, the most verisimilar ra-
dius Rf of which is described by known expression3,4

Rf ¼ aN3=ðdþ2Þ (1)

Here a is statistical length of the chain’s link; N is
number of the links in chain or its length; d is the
dimension of the Euclidean’s space.

Polymeric chains in the concentrated solutions and
melts at molar-volumetric concentration c of the
chains more than critical one c* 5 (NARf

d)21 are
intertwined. As a result, from the author’s point of
view3 the chains are squeezed decreasing their con-
formational volume. Accordingly to the Flory theo-
rem4 polymeric chains in the melts behave as the
single ones with the size R 5 aN1/2, which is the
root-main quadratic radius in the random walks
(RW) Gaussian statistics.

SARW statistics leads to other result.

SARW STATISTICS FOR INTERTWINING
CHAINS IN D-DIMENSIONAL LATTICE SPACE

Let us introduce the d-dimensional lattice with the
cell’s parameter equal to the statistical length a of
the chain’s link; let us notify, that Z is number of
cells in a space and m chains are represented in it;
every chain has the length N. As same as earlier,1

we will disregard the energetic effects considering
the all-possible configurations of the chains as equiv-
alent.
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We appropriate the random chain and notify as ni
the numbers of steps of the end of chain random walk
along i-directions of d-dimensional lattice. At this,

X
i

ni ¼ N; i ¼ 1; d (2)

The probability x(n) that at given ni the end of
chain draws si 5 ni

1 2n�i efficient steps is subordi-
nated to Bernoulli’s distribution.1

xðNÞ ¼ 1

2

� �NY
i

fni!=½ðni þ siÞ=2�!½ðn� siÞ=2�!g (3)

Change of a sign si in eq. (3) does not change the
value x(n); hence this probability represents the
probability of fact that the RW trajectory per ni steps
along i-directions of the d-dimensional space will be
finished in one of the 2d cells M(s), position data of
which are given by vectors s 5 (si), i 5 1, d differing
only by the signs of own components si.

Condition of the self-avoiding RW trajectories’ ab-
sence on the d-dimensional lattice demands the cir-
cumstance at which more than one link of the chain
cannot be stood in every cell. Links of the chain are
inseparable; they cannot be divided from each other
and located into the cells in random order. Thereby,
number of different methods of mN differing links
location per Z identical cells under condition that in
every cell more than one link of the chain cannot be
stood is equal to Z!/(Z - mN)!.

By identifying the cells the antecedent probability
of fact that the cell will be occupied by presented
link equal to 1/Z, and when it will not be occu-
pied—then (1 2 1/Z). Consequently, probability x(z)
of mN differing links distribution per Z identical
cells is determined by Bernoulli’s distribution.

xðzÞ ¼ Z!

ðZ�mNÞ!
1

Z

� �mN

1� 1

Z

� �Z�mN

(4)

Distribution (3) describes the RW trajectory of one
random chain whereas the expression (4) assigns the
links distribution of all m chains. That is why, the
probability x(s) of common event consisting of the
fact that the RW trajectory of random chain is also
the SARW trajectory and at given Z, n, N, and ni
will turned out by its own last step in one among 2d

equiprobable cells M(s) will be equal to

xðsÞ ¼ ðxðzÞÞ1=mxðnÞ (5)

Using the Stirling’s formula under condition Z >
1, N > 1, ni > 1 and factorizations ln(1 2 1/Z) �
21/Z, ln(1 2 mN/Z) � -mN/Z, ln(1 6 si/ni) � 6 si/
ni-(si/ni)

2/2 accordingly to condition si < ni, mN <

Z and also assuming N(N-1) � N2, we find the as-
ymptotic (5) with accuracy to the constant multi-
plier:

xðsÞ � exp �mN2

Z
� 1

2

X
i

s2i =ni

( )
; m � 1 (6)

As same as earlier,1 let us assume, that the fiducial
cells M(s) generally appertain to ellipsoid surface.
Then we have1

Z ¼ dd=2
Y
i

jsij (7)

Determination (7) means, that the d-dimensional
space consisting of Z cells is disposable for any ran-
dom chain; this demands of their full mixing.

Combining the expressions (6) and (7) we will
obtain

xðsÞ ¼ exp �mN2=dd=2
Y
i

jsij � 1

2

X
i

s2i =ni

( )
(8)

Function x(s) determines the probability that the
RW trajectory of the random walk is simultaneously
also by SARW trajectory and by its own last step
realizes the state M(s). Hence, it is numerically equal
to part of these SARW trajectories among general
number (2d)N of RW trajectories which realize the
state M(s). Number L(s) of such SARW trajectories
determines the thermodynamical probability of the
realization M(s):

LðsÞ ¼ ð2dÞNxðsÞ (9)

By summing L(s) upon the all set of possible state
of the chain’s end we find general number L of
SARW trajectory:

L ¼ ð2dÞNcðsÞ (10)

where

cðsÞ ¼
X
s

exp �mN2=dd=2
Y
i

jsij � 1

2

X
i

s2i =ni

( )
(11)

Then function

wðsÞ ¼ 1

cðsÞ exp �mN2=dd=2
Y
i

jsij � 1

2

X
i

s2i =ni

( )
(12)

normalized per unity and determines the end of
chain distribution upon states M(s) of d-dimensional
lattice. It is equal to ratio of number L(s) of SARW
trajectories realizing the state M(s) to general num-
ber L of SARW trajectories: w(s) 5 L(s)/L.
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In turn, the ratio L/(2d)N equal to part of general
number of SARW trajectories among general number
of RW trajectories in accordance with the adopted
terms3 is the fatigue function g(N) of the SARW tra-
jectories: g(N) 5 L/(2d)N 5 c(s).

SARW STATISTICS FOR INTERTWINING
CHAINS IN CONTINUOUS D-DIMENSIONAL

SPACE

Let us introduce the variable of displacement xi,
which is by semiaxis of conformational ellipsoid; the
state M(s) appertains to the surface of this ellipsoid1

xi ¼ ajsijd1=2 (13)

and parameter ri is a standard deviation of the
Gaussian part of the distribution (12)

r2
i ¼ a2nid (14)

In accordance with the expression (2) the follow-
ing connection is imposed on the values riX

i

r2
i ¼ a2Nd (15)

Since S2i /ni 5 x2i/r2
i , dd=2

Q
i

jsij ¼ a�d
Q
i

xi the
eq. (12) can be re-written as

xðxÞ ¼ 1

cðxÞ exp �admN2=
Y
i

xi � 1

2

X
i

x2i =r
2
i

( )
(16)

cðxÞ ¼
Z

exp �admN2=
Y
i

xi � 1

2

X
i

x2i =r
2
i

( )
dx (17)

At this, c(x) is d-multiple integral upon all possible
values xi, dx ¼Q

i

dxi. Since c(x) 5 ad dd/2 c(s) we
have g(N) 5 c(x)/addd/2.

Integral c(x) can be taken with the adequate accu-
racy by saddle-point technique.1,5

Change of (13) introduces an essential difference
between w(s) and w(x): the last determines the prob-
ability w(x)dx of fact that the SARW trajectory at
given values m, N, and ri will finished in the ele-
mentary volume dx ¼ Qi dxi lying on the surface of
the ellipsoid with the semiaxes xi, i 5 1, d.

THERMODYNAMICS OF CONFORMATION
AND DEFORMATION OF INTERTWINING

CHAINS

Maximum w(x) at given m, N, and ri determines the
most expected or equilibrium state of the polymeric
chain. Semiaxes xi of equilibrium conformational
ellipsoid will be found from the condition q ln w(x)/
qxi 5 0 at xi 5 Xi:

Xi ¼ ri admN2=
Y
i

ri

 !1=ðdþ2Þ
(18)

In the absence of external forces all the directions
of the end of chain walking are equiprobable accord-
ingly to condition ni 5 N/d; so

r2
i ¼ r2

0 ¼ a2N (19)

Substitution of (19) into (18) makes the semiaxes
Xi of equilibrium ellipsoid the same and equal to ra-
dius Rm of the conformational sphere; the same dis-
tribution density x(x) corresponds to the surface of
this conformational sphere:

Rm ¼ aN3=ðdþ2Þm1=ðdþ2Þ (20)

Expression (20) determines not only the conforma-
tional radius of one random chain, but due to the
chains intertwining effect it also determines the con-
formational radius of all m chains. Thereby Rd

m is the
conformational volume of m-ball disposable for all
the intertwining chains. As we can see, m-ball is a
fractal with two fractal indexes: first is 3/(d 1 2)
and it determines the dependence Rm on the chain
N; the second is 1/(d 1 2) and it determines the de-
pendence on number of chain in m-ball.

We can see from the comparison of (20) and (1)
that the conformational radius Rm of m-ball and,
respectively, of any random chain in it is more than
the conformational radius Rf of random chain: in m-
ball the chains are stretched but are not twisted. The
presence of other chains diminishes the number of
free cells of d-dimensional lattice accessible for
SARW trajectory of presented chains enforcing it to
encroach more volume of the space.

In the presence of external forces acting along i-
axes of the d-dimensional space, ri = r0 and m-ball
is deformated into the ellipsoid with semiaxes Xi,

according to (18). It is convenient to introduce the fol-
lowing variables as a measure of m-ball deformation

Ki ¼ Xi=Rm (21)

which characterize the multiplicity of the linear de-
formation of m-ball along i-direction of a space.

Next, let us determine the multiplicity Lv of volu-
metric deformation via expression

Kv ¼
Y
i

Xi=R
d
m ¼

Y
i

Ki (22)

Because of eq. (2) 1 at any deformations of the m-
ball its conformational volume is decreased: Lv � 1.
The connection equation between Li corresponds to
connection eq. (2):
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X
i

K2
i ¼ d=

Y
i

Ki (23)

In continuous space the thermodynamical proba-
bility W(x) of the realization of state in which the
end of chain is located on the surface of the ellipsoid
with the semiaxes Xi is equal to

WðxÞ ¼ LxðxÞ (24)

As same as for the lattice space, general number L
of SARW trajectories in continuous space let us
determine in the form (10), that is L � (2d)Nc(x).
That is why

WðxÞ � ð2dÞNexp �admN2=
Y
i

xi � 1

2

X
i

x2i =r
2
i

( )

(25)

Entropy S of presented conformational state is
equal to S 5 k ln W(x), free energy F 5 2TS or F 5
2kT ln W(x). From (25) follows F 5 F0 1 F(x) where

F0 � �kTN ln 2d � � d

2
kTN (26)

FðxÞ ¼ kT admN2=
Y
i

xi þ 1

2

X
i

x2i =r
2
i

( )
(27)

Thereby, F0 represents by itself a free energy of
random walks independent of the conformational
state of a chain; F(x) brings a positive contribution
into F and the sense of this consists in a fact that the
terms F(x) and S(x) represent the limitations imposed
on the trajectories of random walk by request of
the self-avoiding absence. These limitations form the
self-organization effect of the polymeric chain; the
conformation of polymeric chain is the statistical
form of its self-organization.

Since F0 doesn’t depend on the conformational
state of a chain we assume that the free energy of a
polymeric chain conformation is equal to F 5 F(x)
accordingly to (27). Expression for the free energy of
equilibrium conformation of polymeric chain will be
obtained by substitution of the values xi 5 Xi in (27)
in accordance with the (18):

Fm ¼ 1þ d

2

� �
kT

Rm

r0

� �2

=Kv (28)

For nondeformated m-ball we have Lv 5 1 and

F0m ¼ 1þ d

2

� �
kT

Rm

r0

� �2

(29)

From this the expression for the deformation work
(A 5 DFdef in the system of the mechanics signs) of m-
ball into ellipsoid in calculation per one chain follows

DFdef: ¼ 1þ d

2

� �
kT

Rm

r0

� �2 1

Kv � 1

� �
(30)

Since Lv � 1, a work of the deformation is positive
DFdef ‡ 0, that is realized above the polymeric chain.
Let us compare a free energy F0m of the polymeric
chain in nondeformated m-ball with a free energy Ff
of single deformated polymeric chain1

Ff ¼ 1þ d

2

� �
kT

Rf

r0

� �2

=kv (31)

Here kv is a multiplicity of the volumetric defor-
mation of Flory ball.

Let us assume that the chains in m-ball aren’t
intertwined, each of them occupies the isolated vol-
ume equal to Rm

d/m. Then the multiplicity of the
volumetric deformation of Flory ball into m-ball will
be equal to

kv ¼ Rd
m=mRd

f ¼ m�2=ðdþ2Þ (32)

We will obtain for the conformation free energy of
isolated chain into m-ball

Ff ¼ 1þ d

2

� �
kT

Rf

r0

� �2

m2=ðdþ2Þ (33)

that is equal to Fm
0 according to (29) with taking

into account that (Rm/r0)
2 5 (Rf/r0)

2m2/(d 1 2).
Thereby, free energy of the conformation of single

chain into m-ball for intertwining or isolated one
from another chains is the same. Free energy of the
conformation is not the factor, which facilitates or
prohibits the chains intertwining.

In the absence of energetic interaction this factor is
the entropy of mixing. It can be estimated via the
numbers of displacement methods of all the chains
links into m-ball with the exception of a displace-
ment links in every chains: (mN)!/(N!)m. From this,
under the Stirling’s approximation, we will obtain
the expression for the entropy of mixing DSc in cal-
culation per one chain, DSc 5 kN ln m, and, respec-
tively, we will obtain for free energy DFc of mixing

DFc ¼ �kTN ln m (34)

The value DFc < 0 and can be sufficiently big per
absolute value, for instance for melts, to provide the
chains intertwining of their mixing in m-ball.

EQUATION FOR THE CONFORMATIONAL
STATE OF M-BALL

Let us determine the pressure P of a conformation
via the ordinal thermodynamic ratio (q F/q V)T 5 2P
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as a connection measure between the free energy
and the volume of conformation. Taking into
account all the chains into m-ball, we have F 5 mFm,
V 5 Rd

mLv that is why P 5 2 mqFm/qLvR
d
m. By dif-

fering eq. (28) we have

P ¼ 1þ d

2

� �
kT

Rm

r0

� �2

m=Rd
mK

2
v (35)

By multiplying eq. (35) to V2 5 (Rd
mLv)

2 we will
obtain the equation of the conformational state of m-
ball:

PV2 ¼ mkTb (36)

b ¼ 1þ d

2

� �
Rm

r0

� �2

Rd
m (37)

By comparing eqs. (35) and (28) it follows that the
pressure of the conformation numerically is equal to
the density of free energy of the conformation of m-
ball P 5 mFm/V. That is why we have

FmV ¼ kTb (38)

Thereby, the values PV2 and FmV are integrals of
the process of equilibrium deformation of m-ball.

ADIABATIC EQUATION FOR EQUILIBRIUM
DEFORMATION OF M-BALL

It is well-known6,7 that at the adiabatic deformation
of rubber its temperature is increased. The analysis
of this phenomenon in the works 6,7 is not quite cor-
rect. So let us consider the adiabatic deformation of
the m-ball with the use of obtained thermodynamic
ratios.

For elementary adiabatic process CvdT 5 2 dA,
where Cv is the heat of the m-ball, dA is the elemen-
tary work in the systems of the thermodynamics
signs. Because of determination of the conformation
pressure we can write dA 5 PdV and, thereby

CvdT ¼ �PdV (39)

Using the equation of the conformational state (36)
let us divide the variables in eq. (39)

CvdT=T ��mkbdV=V2 (40)

Integration of eq. (40) at Cv 5 const for low-tem-
perature interval in a ranges from V 5 Rd

m and V 5
Rd
mLv and from T0 till T corresponding to the tem-

peratures of the start and the finish of the adiabatic
process gives

Cvln
T

T0
¼ mkb

Rd
m

ð1=Kv � 1Þ (41)

We can see from this, that the adiabatic equation
is as follow

Texpf�mkb=CvR
d
mKvg ¼ const (42)

In accordance with the experimental data the tem-
perature change at the adiabatic deformation of rub-
ber is slight, hence it can be assumed that DT 5 T 2
T0 � T0; this permits to rewrite eq. (41) with taking
into account the expression (37) for b in following
form

DT � 1þ d

2

� �
kT0

cv

Rm

r0

� �2

ð1=Kv � 1Þ (43)

Here it was assumed that Cv 5 mcv, where cv is a
heat of one chain.

EXPRESSION OF THE THERMODYNAMIC
FUNCTIONS VIA RELATIVE CONCENTRATION

OF MACROMOLECULES

In the field of the chains overlapping at c ‡ c* 5
(NAR

d
f )
21 their molar-volumetric concentration into

m-ball and in all volume of the solution or melt is
the same: c 5 m/NAR

d
m.

It is more convenient for the melts to use the other
determination of concentration since q 5 mM/NAR

d
m,

where M is a molar mass of the chain and is experi-
mentally determined by a specific density of the
melt. Speculative critical density q* 5 M/NAR

d
f cor-

responds to it.
From this follows

q=q� ¼ c=c� ¼ m2=ðdþ2Þ (44)

The ratio (44) permits to determine the following
dependencies, which with the aim of the shortness
can be represented in the form of the commensur-
ability: Rm � (c/c*)1/2, Fm � c/c*, and P � (c/c*)2.

FORCES AND WORK OF THE DEFORMATION

Let us introduce one more parameter for characteris-
tics of m-ball deformation with the aim of convenient
description of elastic properties of the intertwining
chains

wi ¼ ri=r0 (45)

Because of the ratio (15) the following connection
exists between wi X

i

w2
i ¼ d (46)

We determine from the analysis of eqs. (18) and
(20), and also from the determinations (21) and (22)
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wi ¼ KiK
1=2
v (47)

In the system of the mechanics signs the deforma-
tion forces acting on the random chain into m-ball
along i-axes of the d-dimensional space are equal to
fi 5 qF(x)/qxi. By differing (27) we will obtain

fi ¼ kT �admN2=xi
Y
i

xi þ xi=r
2
i

 !
(48)

However, under the equilibrium deformation in
every current conformational state the forces should
be equal to zero; just this is expressed via the equi-
librium condition qF(x)/qxi 5 0 at xi 5 Xi. Thereby,
the substitution of the values xi 5 Xi into (48) draws
fi into zero. Let us determine as the force the exter-
nal deformation force along i-direction, which should
be imposed on the nondeformated m-ball with the
conformation radius Rm, which is equilibrium with
respect to the values ri 5 r0 to transform it into the
deformated state of the ellipsoid with the semiaxes Xi

equilibrium with respect to the values ri = r0, i 5
1,d. In accordance with this determination in the
expression (48) in the second term it is necessary to
put ri 5 r0 but the values xi to change on Xi accord-
ingly to (18) at ri = r0. Making the corresponding
substitution we will obtain the following expression
for the external main forces of a deformation

fi ¼ kT
Rm

r2
0

� �
ðw2

i � 1Þ=wi

Y
i

wi

 !1=ðdþ2Þ
(49)

In the adopted systems of signs fi > 0 at the
stretching (wi > 1) and fi < 0 at the contraction (wi

< 1).
With taking into account the connection (47) the

force can be determined via the multiplicities of lin-
ear and volumetric deformation of m-ball.

fi ¼ kT
Rm

r2
0

� �
ðK2

iKv � 1Þ=KiKv (50)

The work of the deformation A in calculation per
one chain into m-ball along the all main directions
can be written in accordance with the mechanics
rules in form:

A ¼
X
i

Zxi
Rm

fidxi (51)

Substitution of (49) in (51) with taking into
account the connection (47) leads to the expression
for A, which is identical to the expression (30) for
Fdef: A 5 DFdef in the systems of the mechanics
signs. The agreement confirms the truth of the deter-

mination of external forces of deformation according
to (49).

ELASTICITY MODULES OF M-BALL

Taking into account the big sizes of polymeric chains
deformation and their nonlinear relation with the
tension let us express the relative linear deformation
dxi/xi along i-direction of d-dimensional space under
the action of all main forces fi, i 5 1,d under the
approximation of m-ball isotropy via the differential
form8

Y@xi=xi ¼ @fi=
Y
j 6¼i

xj þ g
X
j 6¼i

@fj=
Y
k 6¼j

xk (52)

Here: Y is Young’s module; g is Poisson’s coeffi-
cient;

Q
j 6¼i xj and

Q
k 6¼j xk are the values of the sites in

d-dimensional space normal to the forces fi and fj,
respectively.

Let us rewrite the (52) relative to Young’s module

Y ¼ x2iQ
i

ix

@fi
@xi

þ g
X
j 6¼i

xixjQ
i

xi

@fi
@xi

(53)

At equilibrium deformation the forces fi are equal
to zero, but not their derivatives qfi/qxi and qfi/qxj.
That is why by differing (48) upon xi and xj and by
substituting the equilibrium values xi 5 Xi into
obtained expressions we will obtain

@fi=@xi ¼ 3kT=r2
0w

2
i (54)

@fi=@xj ¼ @fj=@xi ¼ kT=r2
0wiwj (55)

Derivatives in (54) and (55) have been written in
accordance with the determination (48) for one ran-
dom chain. However, as same as the conformation
pressure the elastic properties of the intertwining
chains in m-ball need to take into account all the m
chains. That is why by multiplying the right terms
of (54) and (55) on m and by substituting the result
in (53) we will find

Y ¼ mkT½3þ gðd� 1Þ� Rm

r0

� �2

=Rd
mK

2
v (56)

From the comparison of eqs. (35) and (56) follows,
that the Young’s module of m-ball and the conforma-
tion pressure are differed only by the coefficient and

Y ¼ 2½3þ gðd� 1Þ�
dþ 2

P (57)

In general case of the d-dimensional space the con-
nection between the Young’s module and the pres-
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sure is expressed via the volumetric module E 5
2VdP/dV by ratio8

E ¼ Y=d½1� gðd� 1Þ� (58)

From the equation of a state (12) follows

E ¼ 2P (59)

By comparing the eqs. (57)–(59) we will obtain the
expression for Poisson’s coefficient

g ¼ ðdþ 3Þ=ðdþ 1Þ2 (60)

Thereby, as same as for the random chain,1 the
Poisson’s coefficient for intertwining chains is deter-
mined only by the dimensionality d of the Eucli-
dean’s space and at d 5 3 is equal to g 5 3/8.

Via the Young’s module and the Poisson’s coeffi-
cient we find the shift module l2:

l ¼ Y=2ð1þ gÞ at d � 2 (61)

which is also easy expressed via the conformation
pressure

l ¼ 3þ gðd� 1Þ
ðdþ 2Þð1þ gÞP (62)

MAIN TENSIONS AND THE TENSILE
STRENGTH

Connection between the tension Gi in planar surface
normal to i-direction of the deformation and
between its relative value qxi/xi also let us write in
differential form

@Gi ¼ Y@xi=xi (63)

In general case this equation hasn’t a simple ana-
lytical solution, but permits with the use of (23) and
(46) to obtain easily the constraint equation between
Gi. By acting analogously to the developed algo-
rithm,1 we will obtain

X
i

Gi ¼ � 1

2
Y0ð1=K2

v � 1Þ (64)

where Y0 5 Y at Lv 5 1, that is for nondeformated
m-ball.

The sign ‘‘minus’’ signifies, that a sum of the main
tensions is subzero (that is negative) at any deforma-
tions of m-ball through its volume decreasing.

For analytical demonstration of Gi at equilibrium
deformation, that is at xi 5 Xi let us rewrite the eq.
(63) by taking into account the ratio Y 5 Y0/L2

v and

substitute in it the expression @ ln xi ¼ @ ln wi�
1=2 d ln Kv which follows from the connection (47).
Then we will obtain

@Gi ¼ Y0 @w=wi

Y
i

wi

 !4=dþ2

� 1

2
@Kv=K

3
v

2
4

3
5 (65)

In the starting nondeformated state of m-ball the
all wi 5 1, Lv 5 1, and Gi 5 0. By integrating (65)
accordingly to these conditions we will find

Gi ¼ Y0 1

4
ð1=K2

v � 1Þ þ Ii

� �
(66)

Ii ¼
Z wi

1

@wi=wi

Y
i

wi

 !4=ðdþ2Þ
(67)

From this follows, that for the calculation of Ii and
Gi, respectively, the constraint eq. (46) between wi is
insufficient; additional information about the charac-
ter of deformation is needed to determinate the
additional connection between wi. One among the
variants of the Gi calculation is considered in the
next chapter.

At the m-ball stretching along the i-direction such
critical tension is beginning at which m-ball is bro-
ken into two parts. Such critical tension Gicr is the
numerical estimation of m-ball tensile stretch. Its
mechanism is sufficiently complicated, but we will
propose a simple model for the Gicr calculation.
Accordingly to this model we assume that the break
of m-ball into two parts at Gicr proceeds at the
expense of the chains fraying, that is at the expense
of the process inverse to their intertwining the physi-
cal network of the linkings is destroyed. Crosslink-
ing of the chains at rubber vulcanization blocks the
chains intertwining and so increases the stability of
the vulcanized rubber. The chains intertwining in m-
ball decreases the entropy of mixing. For nondefor-
mated m-ball the entropy of mixing DSc for all m
chains is determined as

DSc ¼ k Nm ln m (68)

Let in the deformated m-ball at a moment of break
the part of the residual intertwining chains is equal
to a. Then the entropy of mixing will be equal to

DSc ¼ k Nm a lnðmaÞ; ma > 1 (69)

The break of m-ball we consider as such equilib-
rium transition at which m-ball with the intertwining
parameter a is divided by the plane of fracture into
two m/2-balls with the same intertwining parameter.
The entropy of mixing into two m/2-balls will be
equal to
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DS0c ¼ kNamlnðam=2Þ; am

2
> 1 (70)

The loss of the entropy of mixing at the m-ball
braking will be D(DSc) 5 DS0c 2 DSc; thereafter the
work of a break DFbr 5 2 TD(DSc) will be

DFbr ¼ kTNam ln 2 (71)

At breaking the m-ball into two parts it can be
assumed that a 5 1/2. Then

DFbr ¼ ð1=2ÞkTNm ln 2 (72)

This work of the break is created by the work of
the m-ball deformation at some critical value of the
multiplicity of volumetric deformation Lvcr

. That is
why by equating a work of the deformation DFdef
according to (30) multiplied on m- in calculation per
all m-ball at some critical value Lvcr to the work of a
break DFbr accordingly to (72), we will find Lvcr:

Kvcr ¼ 1þ 1

dþ 2

r0

Rm

� �2

N ln 2

" #�1

(73)

Knowing the Lvcr, we can calculate the tensile
strength Gicr

at the m-ball stretching along the i-direc-
tion.

CALCULATIONS AND ILLUSTRATIONS

For calculations let us consider the real d 5 three-
dimensional space assuming that among three main
tensions fx, fy, and fz only one, for example fz is inde-
pendent variable, that is external force, and fx, and fy
are reaction forces on fz. At the isotropy of m-ball
the forces and multiplicities of linear deformations
along the x and y axes will be equal: fx 5 fy, Lx 5
Ly. In this case the conformational volume of the m-
ball shapes the elongated (fz > 0, Lz > 1) or strangu-
lated (fz < 0, Lz < 1) along z-axis on the ellipsoid of
rotation.

For the ellipsoid of rotation the general constraint
eqs. (23) and (46) take on the particular form

2K2
v þ K3

zKv � 3Kz ¼ 0 (74)

2w2
x þ w2

z ¼ 3 (75)

By assigning the values Lz as to singular inde-
pendent variable the values Lv have been calculated

and further Kx ¼ Ky ¼ Kv=Kz

� �1=2
.

For the shortness let us confine to the numerical
analysis of the isothermal and adiabatic deformation
of natural rubber, which at comparatively low chains
crosslinking can be described as a melt.

For natural rubber—polyisoprene (C5H8)N—the
following parameters have been chosen: number-av-
erage molar mass of the chain M 5 2 106 g/mol and
average length of the chain N 5 2.9 104; q 5 0.91 106

g/m3, a 5 0.125 nm. On the basis of these parame-
ters q* 5 1.54 104 g/m3 and q/q* 5 59.1 were deter-
mined.

The work of the isothermal deformation in units
kT has been calculated in accordance with the eq.
(30) converted to a form

DFdef=kT ¼ 5

2
N1=5 q

q�

� �
ð1=Kv � 1Þ (76)

Results of the calculations are represented on Fig-
ure 1.

Dependence of DFdef/kT for one chain of the natu-
ral rubber on Lz is the same as for the Flory’s ball,1

but numerically exceeds the last in q/q* times. Let us
notify also, that in spite of the ‘‘very much’’ value
DFdef/kT for one chain in calculation per one link,
this magnitude has an order equal to 1.

Temperature change at adiabatic deformation of
natural rubber was calculated accordingly to eq.
(43), which under assumption cv 5 c0vN, where c0v 5
c0p is molar heat of the isoprene carries to

DT ¼ 5=2
RT0

c0p
N�4=5 q

q�

� �
ð1=Kv � 1Þ (77)

where R is universal gaseous constant. At the calcu-
lation accordingly to (77) it was assumed in accord-
ance with the reference data for the isoprene cp

0 5
152.3 J/moleK, T0 5 300 K.

Results of the calculations are represented on Fig-
ure 2. They are in good agreement with the experi-
mental data.6,7

Young’s module has been calculated in accordance
with the eq. (56) by taking into account (44) and g 5
3/8:

Figure 1 The work of the natural rubber deformation at
its stretching (L0

z > 1) and squeezing (L0
z < 1) along z axis.

Calculation has been done in accordance with the eq. (76).
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Y ¼ 3; 75
kT

a3
N�8=5 q

q�

� �2

=K2
v ¼ Y0=K2

v (78)

where Y0 5 1,97 MPa is Young’s module of nonde-
formated rubber at T 5 300 K. Results of the calcula-
tions are represented on Figure 3.

For the ellipsoid of rotation Gx 5 Gy, that is why
we can write in accordance with (66)

Gx ¼ Y0 1

4
ð1=K2

v � 1Þ þ Ix

� �
(79)

Gz ¼ Y0 1

4
ð1=K2

v � 1Þ þ Iz

� �
(80)

Because of connection (75) every from integrals Ix
and Iz can be balanced to one own variable. In ac-
cordance with the (67) and (75) we have

Ix ¼
Zwx

1

dwx=w
13=5
x ð3� 2w2

xÞ2=5 (81)

Iz ¼ 24=5
Zwz

1

dwz=w
9=5
z ð3� w2

zÞ4=5 (82)

At this, superior limits of the integration are given
by the ratios wx 5 LxL

1=2
v and wz 5 LzL

1=2
v following

from (47).
Results of the calculations accordingly to eqs. (79)–

(82) at Y0 5 1.97 MPa are represented on Figure 4.
Needed for the estimation of Gzcr value of critical

multiplicity of volumetric deformation Lvcr was cal-
culated accordingly to eq. (73) by transforming it to
a form

Kvcr ¼ 1þ 1

5
N4=5 q�

q

� �
ln2

� ��1

(83)

As a result, we have obtained Lvcr 5 0,103, respec-
tively, Lzcr 5 5,39, Lxcr 5 0,138. Gzcr 5 48 MPa corre-
sponds to these values.

As we can see from the Figure 4, calculated de-
pendence of the tension Gz on the multiplicity of nat-
ural rubber stretch is in good agreement with the ex-
perimental data. 6,7,9 However, the numerical values
Gz and Gzcr

are in whole rather higher than the ex-
perimental ones. It is connected with the fact, that
the last represented by themselves was not faithful,
but conventional tensions and tensile strengths,
which were estimated by not taking into account the
volumetric deformation of the rubber.6,7,9

Figure 3 Dependence of the Young’s module on the mul-
tiplicity of linear deformation Lz at stretching and squeez-
ing of natural rubber along z axis. Calculation has been
done in accordance with the eq. (78).

Figure 2 Temperature increasing at adiabatic deformation
of natural rubber at its stretching (Lz > 1) and squeezing
(Lz < 1) along z axis. Calculation has been done in accord-
ance with the eq. (77).

Figure 4 Dependence of the main tensions Gz and Gx on
the multiplicity of linear deformation Lz at stretching and
squeezing of natural rubber along z axis. Calculation has
been done in accordance with the eqs. (79)–(82).
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CONCLUSIONS

Accordingly to the self-avoiding random walks sta-
tistics in the field of the chains intertwining that is
in concentrated solutions and melts the polymeric
chains are stretched increasing its conformational
volume. In this volume other chains are also repre-
sented forming the m-ball. Free energy of the chain
conformation doesn’t depend on a fact if chains are
intertwined or they are isolated in m-ball. The en-
tropy of mixing is responsible for the chains inter-
twining in m-ball, but not free energy of the chains
conformation. Dependencies of the conformational
radius, free energy, and conformation pressure on
relative concentration of the polymeric chains into
solution or melt have been determined. Thermody-
namical analysis of the isothermal and adiabatic de-
formation of m-ball has been done.

Self-avoiding random walks statistics for inter-
twining polymeric chains and based on it thermody-
namics of their conformational state in m-ball per-
mitted to obtain the theoretical expressions for elas-
ticity modules and main tensions appearing at the

equilibrium deformation of m-ball. Calculations on
the basis of these theoretical expressions without em-
pirical adjusting parameters are in good agreement
with the experimental data.
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